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Abstract 

Modern educational systems are transferring to digital forms in most of their features. For instance, digitalizing exam scheduling has been a complicated 
task in universities for decades with no clear solutions. In this study, we explore the application of shuffling techniques to generate acceptable schedules 
following standard university constraints and we present an advanced comparative study between widely used shuffling algorithms. Moreover, we 
present a judgment scheme to justify the addition or removal of extra examination days. We studied the performance of the Fisher-Yates, Sattolo, 
BogoSort, MergeShuffle, and Riffle shuffling algorithms on three real registration datasets from the German Jordanian University. The datasets were 
fully encoded and highly diverse in terms of student counts, courses, multi-sections availability, and registration cases. We report that shuffling 
significantly enhances the exam scheduling process and increases the chances of finding acceptable schedules. To obtain stable results, we applied each 
shuffling algorithm up to 100k times for each registration dataset and then analyzed the number of acceptable schedules generated along with the time 
required to generate them and test their compliance with university examination constraints. Although most shuffling algorithms generate acceptable 
schedules, MergeShuffle exhibits a distinguished performance under different aspects of diverse datasets. 
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1.Introduction 

Providing digital services to staff and students is an 
important objective in universities strategic plans. 
Exam Scheduling is one of the main features in 
universities educational systems. It is a complicated 
task given that the constraints the universities have 
and their limited scheduling time. Many universities 
use a relaxed examination mode where exam dates 
are defined based on a discussion between the 
instructor and the students. In this scenario, a 
student decides about the ability of having multiple 
exams a day or requesting a makeup exam. Other 
universities define obligatory examination 
constraints and have acceptable schedules 
announced to instructors and students early in the 
semester once the course registration cases are 
completed. In this study, we discuss creating 
schedules considering two widely-adapted 
constraints which are: 1. The schedule should have a 
maximum of two exams per day for each student 2. 
Daily exams should not conflict in time for any 
student. As spacing is required in examinations, 
room capacity should be considered as a third 
constraint. Manual preparation of a schedule is a 
tedious task, and an acceptable schedule is almost 
impossible. Therefore, universities target digitalized 
solutions that generate mid-term and final schedules  

considering mandatory constraints.  

Many projects have targeted exam scheduling and 
have introduced new techniques to automate the 
process. Recently, a module with two genetic 
algorithms was introduced to solve the exam 
scheduling problem. The solution incorporates two 
techniques: the first is a pure genetic algorithm, and 
the other combines graph algorithms with variations 
of the genetic algorithm, and reports substantial 
improvements over traditional methods [1]. Modules 
using Memtic Algorithms have been proposed as 
quality improvement techniques for schedule 
generation [2]. Moreover, schedule quality was 
effectively considered in the adaptation of Greedy-
Least Saturation Degree (G-LSD) heuristic to 
evaluate the generated schedules [3]. Generally, 
Heuristic methods have been considered in exam 
scheduling problems, where other researchers 
preferred Hyper-heuristics to metaheuristics and 
reported noteworthy achievements [4]. However, 
schedule quality can be enhanced if operational costs 
are minimized. Therefore, profiling-based 
algorithms begin by grouping course exams based on 
their requirements before scheduling, thereby 
ensuring minimum costs at the scheduling time [5]. 
Another factor to consider is the flexible versus hard-
scheduling constraint. Patrovic et al. used fuzzy 
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constraints to provide a satisfaction measure for the 
generated schedule and evaluated the tradeoff 
between soft and hard constraints [6]. However, 
unnecessary flexibility in soft constraints or ignoring 
registration data may jeopardize the schedule 
quality. Therefore, modern approaches have studied 
the ability to generate schedules with solid base 
knowledge on the curricula without significant loss 
in solution quality and have reported a significantly 
reduced need for rescheduling [7]. 

The computational time required to complete a 
schedule is widely reported. Therefore, parallel 
computation was used in the examination process to 
reduce schedule generation time[8]. However, 
heuristic ordering-based methods have reported 
notable achievements in exam scheduling, even with 
limited computing resources and reduced time 
costs[9]. Moreover, the required time can be reduced 
if the required processing iterations are minimized. 
Therefore, a multistage schedule generation theme 
was introduced, where the scheduling process starts 
with a partial assignment of scheduled courses 
followed by multiple improvement stages until the 
final desired schedule is achieved [10,22]. 

Nonetheless, simple solutions should still be valid for 
generating a schedule that considers all mandatory 
constraints. The distribution of courses among daily 
sessions and the planned schedule period should be 
considered using simple randomization schemes. We 
have applied basic shuffling techniques over the past 
10 years and achieved exceptional results. However, 
different shuffling algorithms result in different 
computational times and numbers of iterations. 

1.1 Objective of the study 

The aim of this work is to analyze the efficacy of 
different shuffling algorithms in terms of time and 

iteration counts when used to generate conflict-free 
university exam schedules. Moreover, we publish 
real but encoded registration data for a medium-size 
university, which can be used as a model for future 
research in this area. 

1.2 Organization 

This article is organized into the following sections : 
Section 1 I introduce the issues universities face 
when generating conflict-free exam schedules along 
with the current methods used in the generation 
process. Section 2 presents the encoded real 
registration datasets we acquired from the German 
Jordanian University along with the shuffling 
methods we are comparing in the process of schedule 
generation. Section 3 presents the results of applying 
the shuffling algorithms to generate conflict-free 
schedules using real registration data along with a 
detailed comparison of the achievements of the 
chosen shuffling algorithms. Section 4 concludes his 
work and suggests future directions.  

2. Materials and Methods  

In this section, we present the datasets, applied 
algorithms, and testing methods used to compare the 
different algorithms while generating the acceptable 
schedules. 

2.1 Data sets 

In this work, we present real datasets encoded for 
privacy constraints from real registration data of 
bachelor’s degree students at German Jordanian 
University in three consecutive semesters, as 
explained in Table 1. Fully encoded datasets are 
found in the supplementary files (First, Second, 
Summer). 

                                                                                                                                                                                                                                       
Table 1: Dataset description 

Semester Registration 
Dataset size 

Students  Courses Calendar 
exam days 

Summer 5597 2497 128 6 
First 17909 4001 294 12 
Second 17493 3708 309 12 

The difference in the dataset size is an important 
testing factor, where suitable shuffling techniques 

must exhibit stable behavior in small-, medium-, and 
large-scale datasets. Another important factor is the 
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availability of large multi-section courses, where the 
first semester has only 106 and the second semester 
has 110 courses, although it has fewer students and 
a smaller dataset. The summer semester had only 36 
multi-section courses. Multi-section courses have 
increased conflicts with other courses and are 
extremely difficult to implement in exam schedules. 

2.2 Shuffling algorithms 

In this paper, we present a detailed analysis of five 
different shuffling algorithms, namely the Fisher–
Yates Shuffle (Knuth Shuffle) [11], Sattolo’s 
Algorithm [12], Bogosort[13], MergeShuffle[14], 
and Riffle Shuffle (Overhand Shuffle),[15] all of 
which are explained in this section. 

2.2.1 Fisher–yates shuffle (knuth shuffle) 

The algorithm was first introduced in 1938 as a 
card-shuffling technique. In a later version, the 
algorithm was updated to run in linear time O(n) by 
eliminating some counterproductive side aspects, 
and was suggested to be applied in computer 
applications [16]. The modern version of the 
algorithm was re-announced as Algorithm P, and has 
been highly adapted for computer applications [17]. 
The algorithm aims to shuffle the array elements at 
a low memory cost. It starts by iterating from the 
last array element to the second array element, and 
it swaps the selected element with a randomly 
chosen element that is located before it or even 
ensures a uniform probability across all 
permutations. 

2.2.2 Sattolo’s Algorithm 

Sattolo’s algorithm is a well-known variant of 
Fisher-Yates shuffling algorithm [12]. It was first 
introduced in 1986 as a random cyclic update, in 
which array elements can be moved to new 
positions in a single cycle of length n, which is the 
original size of the array. The algorithm is widely 
used in modern computing applications, such as 
cryptography and mathematical modeling, owing to 
its effectiveness and linear complexity O(n). 
However, this algorithm is not suitable for 
applications that require uniform probability 
distributions, because cyclic permutations may not 
contain all possible permutations.  

2.2.3 Bogo sort 

Bogosort is also known as permutation sort or 
stupid sort [18,21]. This helps to shuffle the datasets 
that are not sorted because it repeatedly generates 
random mutations until the list is sorted. As the end 
status is a sorted status, it is labelled as a sorting 
algorithm but is among the least effective because 
randomizing the data to reach a sorting status leads 
to unmeasurable conditions in terms of memory, 
time, and required computational power. Therefore, 
the expected time complexity is not clear, but the 
minimum expected complexity is O(n) and the 
maximum is limitless. However, generating random 
mutations leads to limited shuffling, which may 
affect the scheduling. In Bogosort developments, the 
Fisher–Yates Shuffle is normally applied until a 
sorted set is achieved. Therefore, in this study, we do 
not re-peat the Fisher–Yates Shuffle, but test the 
results of Bogosort and the effect-sorted datasets on 
the scheduling problem.  

2.2.4 Merge shuffle 

The MergeShuffle algorithm follows the von 
Neumann 1945 MergeSort algorithm, [17] 
particularly in terms of the required running time 
and di-vide-and-conquer design paradigm. This 
algorithm is relatively quick when it runs in 
nlog2(n)+O(1) time and is subject to parallelization 
procedures [14]. Additionally, the algorithm 
resulted in a swift performance even in increasing 
permutation environments compared with the 
Fisher–Yates Shuffle, which noticeably slowed down 
in the same environments. Moreover, Fisher–Yates 
Shuffle uses an increased number of recursive calls, 
whereas MergeShuffle sets a cutoff threshold to 
limit such calls.  

2.2.5 Riffle shuffle (Overhand Shuffle) 

 Shuffling play cards are widely performed using the 
Gilbert-Shannon-Reeds (GSR) model, which is based 
on the Riffle shuffle algorithm [19]. Riffle shuffle 
was investigated in terms of the shuffles required to 
make the deck almost random. In 1992, Bayer and 
Diaconis suggested that seven shuffles should be 
adequate for randomizing card decks [20]. However, 
if the dataset is larger than a standard card deck, 
Riffle shuffle is not favored as the application 
complexity increases, and scalable challenges are 
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not well investigated.  

2.3 Testing module 

In this study, we built all the algorithms in the R-
CRAN environment and applied them sequentially 
to the datasets listed in Table 1. Each algorithm was 
granted 1000 runs of application to each dataset, 
where each run had up to 100 iterations, and a 
random schedule was generated in each iteration. 
up to 100k schedules were generated using each 
algorithm for each dataset. If an iteration leads to an 
acceptable schedule, the remaining iterations are 
omitted from the next run. A testing module was 
created to determine the schedules that fulfilled all 
the obligatory constraints. Partial fulfillment was 
not achieved in this study. An acceptable schedule 
must have all obligatory constraints fulfilled by each 
student, where a student can have up to two exams 
per day and the exams must not conflict in time, 
knowing that each examination day can have up to 
four time slots. Figure 1 presents a schematic 
diagram of the testing module. Additionally, we 
tested for the adequacy of the calendar exam days, 
where an additional exam day was introduced if all 
methods failed to find an acceptable schedule in 
their 100k generated schedules, and we removed 
one day if an algorithm found a schedule in at least 
50% of its runs. Reducing the number of exam days 
while still applying the obligatory constraints is 
highly favorable. Finally, to achieve a fair time 
comparison, we used the same device and testing 
module for all algorithms.  

 

Figure 1: Testing module 

73. Results and Discussion 

In this section, we present the results of applying the 
chosen shuffling algorithms to the three-semester 

datasets. In addition to the time required to generate 
and test an acceptable schedule, we report the 
number of acceptable schedules generated by each 
algorithm. Moreover, the sufficiency of exam dates is 
well-tested by adding or removing exam days based 
on the achieved results. For instance, six days were 
insufficient to create an acceptable schedule among 
the 100k schedules generated by each algorithm. 
Therefore, we added a new examination day in which 
most algorithms led to acceptable schedules. On the 
other hand, we reduced the number of examination 
days for the first semester to 11 days, where 12 days 
led to many acceptable schedules and 11 days led to 
sufficient acceptable schedules, as presented in Table 
2. We report that none of the 100k Fisher-Yates 
shuffling algorithms led to an acceptable schedule, 
while other algorithms found at least 1. Surprisingly, 
Riffle Shuffle reported exceptional performance, 
indicating that with fewer multi-section courses and 
an adequate number of exam days, it can be a good 
choice. Moreover, MergeShuffle exhibited an 
acceptable performance under the same conditions. 

Table 2: Effect of shrinking first semester examination 
days 

Algorithm 12 Days  11 Days  
Fisher–Yates Shuffle 923 0 
Sattolo’s Algorithm 914 1 
Merge Shuffle 983 3 
Riffle Shuffle 1000 20 

To apply Bogosort in our analysis while not repeating 
the Fisher-Yates shuffle, we sorted 
(ascending/descending) courses based on the 
student count as a result of Bogosort and then 
generated corresponding schedules. However, we 
reported that sorting never leads to acceptable 
schedules, indicating that it is not beneficial for 
scheduling problems. Other algorithms achieved 
acceptable schedules in most semesters but differed 
in the number of iterations that found an acceptable 
schedule and the time required to find them. Table 3 
presents the detailed results of applying the selected 
algorithms to the second semester dataset. The Riffle 
shuffle could not lead to an acceptable schedule 
among the 100k generated schedules in the second-
semester dataset. Possible reasons for this include 
the high number of courses, increased number of 
multi-section courses, and limited examination days. 
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Other algorithms reported acceptable schedules, 
where Merge Shuffle reported approximately three 

times the acceptable schedules compared to the 
Fisher-Yates and Sattolo algorithms. 

Table 2: Results of applying chosen algorithms to second 
semester dataset 

Algorithm Count of 

acceptable 

schedules 

Median of 

detection time 

(Seconds) 

Fisher–Yates 

Shuffle 

69 11.9 

Sattolo’s Algorithm 65 14.8 

Merge Shuffle 198 13.9 

The summer semester dataset was relatively small in 
terms of student count and registered courses. The 
number of examination days was increased to seven, 
because none of the algorithms reported an 
acceptable schedule using six examination days.  
Table 4 presents the detailed results for the summer 
semester. Acceptable schedules were achieved in 
most of the runs for all algorithms; however, Riffle 
and MergeShuffle required less time. 

Table 3: Results of applying chosen algorithms to 
summer semester dataset  

Algorithm Count of 

acceptable 

schedules 

Median of 

detection time 

(Seconds) 

Fisher–Yates Shuffle 821 2.27 

Sattolo’s Algorithm 802 3.13 

MergeShuffle 875 2.0 

Riffle Shuffle 827 1.9 

 
In our findings, MergeShuffle and Sattolo’s algorithm 
reported stable performance in the diverse datasets 
we chose and found acceptable schedules, even with 
increased numbers of multi-section courses on 
limited exam days. However, their achievements 
differ when early schedules are acceptable using 
MergeShuffle, whereas Sattolo’s algorithm can 
generate many unusable schedules before finding an 
acceptable schedule. Figure 2 is a histogram 
presenting the differences in performance between 

MergeShuffle and Sattolo’s algorithm considering the 
second-semester findings. As assigned before, each 
run creates up to 100 schedules (x axis). The figure 
presents the frequency of finding the conflict-free 
schedule among the 100 created schedules. the figure 
shows that MergeShuffle is expected to find a conflict-
free schedule among the early created schedules 
while using Sattolo’s algorithm might lead to several 
useless conflicting schedules before finding the 
desired schedule.  

 

Figure 2: A histogram comparing the performance of 
MergeShuffle and Sattolo’s algorithm 

4. Conclusion and Future Scope  

In this study, we investigated the effects of applying 
different shuffling algorithms in the process of 
scheduling university exams. Where sorted courses 
based on student counts did not succeed in creating 
an acceptable schedule, shuffling algorithms reported 
a significant success. We used real registration 
datasets from German Jordanian University (GJU). 
The chosen fully encoded datasets presented diverse 
environments, as they differed in terms of 
registration cases, number of students, and number 
of multi-section courses. To perform proper testing, 
we repeated the application of each algorithm to each 
dataset up to 100k times and reported our findings. 
We found that some shuffling algorithms, such as 
MergeShuffle and Sattolo’s algorithm, worked 
properly under all environments but with higher time 
costs. Other algorithms might have a faster action but 
would work only in certain environments, such as the 
Fisher-Yates and Riffle algorithms. Moreover, the 
usage of MergeShuffle or Sattolo’s algorithm is highly 
expected to result in a conflict-free schedule while 
achieving the same result of other algorithms is less 
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probable. Based on our findings, we highly advise to 
use shuffling algorithms in the scheduling problem 
while considering the features of registration 
datasets. Finally, our findings suggest that shuffling 
algorithms especially MergeShuffle and Sattolo’s 
algorithm can be trusted for future developments of 
university systems to achieve conflict-free exam 
schedule generations  
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