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Abstract

Modern educational systems are transferring to digital forms in most of their features. For instance, digitalizing exam scheduling has been a complicated
task in universities for decades with no clear solutions. In this study, we explore the application of shuffling techniques to generate acceptable schedules
following standard university constraints and we present an advanced comparative study between widely used shuffling algorithms. Moreover, we
present a judgment scheme to justify the addition or removal of extra examination days. We studied the performance of the Fisher-Yates, Sattolo,
BogoSort, MergeShuffle, and Riffle shuffling algorithms on three real registration datasets from the German Jordanian University. The datasets were
fully encoded and highly diverse in terms of student counts, courses, multi-sections availability, and registration cases. We report that shuffling
significantly enhances the exam scheduling process and increases the chances of finding acceptable schedules. To obtain stable results, we applied each
shuffling algorithm up to 100k times for each registration dataset and then analyzed the number of acceptable schedules generated along with the time
required to generate them and test their compliance with university examination constraints. Although most shuffling algorithms generate acceptable

schedules, MergeShuffle exhibits a distinguished performance under different aspects of diverse datasets.
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1.Introduction

Providing digital services to staff and students is an
important objective in universities strategic plans.
Exam Scheduling is one of the main features in
universities educational systems. It is a complicated
task given that the constraints the universities have
and their limited scheduling time. Many universities
use a relaxed examination mode where exam dates
are defined based on a discussion between the
instructor and the students. In this scenario, a
student decides about the ability of having multiple
exams a day or requesting a makeup exam. Other
universities  define  obligatory = examination
constraints and have acceptable schedules
announced to instructors and students early in the
semester once the course registration cases are
completed. In this study, we discuss creating
schedules  considering two  widely-adapted
constraints which are: 1. The schedule should have a
maximum of two exams per day for each student 2.
Daily exams should not conflict in time for any
student. As spacing is required in examinations,
room capacity should be considered as a third
constraint. Manual preparation of a schedule is a
tedious task, and an acceptable schedule is almost
impossible. Therefore, universities target digitalized
solutions that generate mid-term and final schedules

considering mandatory constraints.

Many projects have targeted exam scheduling and
have introduced new techniques to automate the
process. Recently, a module with two genetic
algorithms was introduced to solve the exam
scheduling problem. The solution incorporates two
techniques: the first is a pure genetic algorithm, and
the other combines graph algorithms with variations
of the genetic algorithm, and reports substantial
improvements over traditional methods [1]. Modules
using Memtic Algorithms have been proposed as
quality improvement techniques for schedule
generation [2]. Moreover, schedule quality was
effectively considered in the adaptation of Greedy-
Least Saturation Degree (G-LSD) heuristic to
evaluate the generated schedules [3]. Generally,
Heuristic methods have been considered in exam
scheduling problems, where other researchers
preferred Hyper-heuristics to metaheuristics and
reported noteworthy achievements [4]. However,
schedule quality can be enhanced if operational costs
are  minimized. @ Therefore,  profiling-based
algorithms begin by grouping course exams based on
their requirements before scheduling, thereby
ensuring minimum costs at the scheduling time [5].
Another factor to consider is the flexible versus hard-
scheduling constraint. Patrovic et al. used fuzzy
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constraints to provide a satisfaction measure for the
generated schedule and evaluated the tradeoff
between soft and hard constraints [6]. However,
unnecessary flexibility in soft constraints or ignoring
registration data may jeopardize the schedule
quality. Therefore, modern approaches have studied
the ability to generate schedules with solid base
knowledge on the curricula without significant loss
in solution quality and have reported a significantly
reduced need for rescheduling [7].

The computational time required to complete a
schedule is widely reported. Therefore, parallel
computation was used in the examination process to
reduce schedule generation time[8]. However,
heuristic ordering-based methods have reported
notable achievements in exam scheduling, even with
limited computing resources and reduced time
costs[9]. Moreover, the required time can be reduced
if the required processing iterations are minimized.
Therefore, a multistage schedule generation theme
was introduced, where the scheduling process starts
with a partial assignment of scheduled courses
followed by multiple improvement stages until the
final desired schedule is achieved [10,22].

Nonetheless, simple solutions should still be valid for
generating a schedule that considers all mandatory
constraints. The distribution of courses among daily
sessions and the planned schedule period should be
considered using simple randomization schemes. We
have applied basic shuffling techniques over the past
10 years and achieved exceptional results. However,
different shuffling algorithms result in different
computational times and numbers of iterations.

1.1 Objective of the study

The aim of this work is to analyze the efficacy of
different shuffling algorithms in terms of time and

iteration counts when used to generate conflict-free
university exam schedules. Moreover, we publish
real but encoded registration data for a medium-size
university, which can be used as a model for future
research in this area.

1.2 Organization

This article is organized into the following sections :
Section 1 I introduce the issues universities face
when generating conflict-free exam schedules along
with the current methods used in the generation
process. Section 2 presents the encoded real
registration datasets we acquired from the German
Jordanian University along with the shuffling
methods we are comparing in the process of schedule
generation. Section 3 presents the results of applying
the shuffling algorithms to generate conflict-free
schedules using real registration data along with a
detailed comparison of the achievements of the
chosen shuffling algorithms. Section 4 concludes his
work and suggests future directions.

2. Materials and Methods

In this section, we present the datasets, applied
algorithms, and testing methods used to compare the
different algorithms while generating the acceptable
schedules.

2.1 Data sets

In this work, we present real datasets encoded for
privacy constraints from real registration data of
bachelor’s degree students at German Jordanian
University in three consecutive semesters, as
explained in Table 1. Fully encoded datasets are
found in the supplementary files (First, Second,
Summer).

Table 1: Dataset description

Semester Registration Students Courses Calendar
Dataset size exam days

Summer 5597 2497 128 6

First 17909 4001 294 12

Second 17493 3708 309 12

The difference in the dataset size is an important
testing factor, where suitable shuffling techniques
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must exhibit stable behavior in small-, medium-, and
large-scale datasets. Another important factor is the
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availability of large multi-section courses, where the
first semester has only 106 and the second semester
has 110 courses, although it has fewer students and
a smaller dataset. The summer semester had only 36
multi-section courses. Multi-section courses have
increased conflicts with other courses and are
extremely difficult to implement in exam schedules.

2.2 Shuffling algorithms

In this paper, we present a detailed analysis of five
different shuffling algorithms, namely the Fisher-
Yates Shuffle (Knuth Shuffle) [11], Sattolo’s
Algorithm [12], Bogosort[13], MergeShuffle[14],
and Riffle Shuffle (Overhand Shuffle),[15] all of
which are explained in this section.

2.2.1 Fisher-yates shuffle (knuth shuffle)

The algorithm was first introduced in 1938 as a
card-shuffling technique. In a later version, the
algorithm was updated to run in linear time O(n) by
eliminating some counterproductive side aspects,
and was suggested to be applied in computer
applications [16]. The modern version of the
algorithm was re-announced as Algorithm P, and has
been highly adapted for computer applications [17].
The algorithm aims to shuffle the array elements at
a low memory cost. It starts by iterating from the
last array element to the second array element, and
it swaps the selected element with a randomly
chosen element that is located before it or even
ensures a uniform probability across all
permutations.

2.2.2 Sattolo’s Algorithm

Sattolo’s algorithm is a well-known variant of
Fisher-Yates shuffling algorithm [12]. It was first
introduced in 1986 as a random cyclic update, in
which array elements can be moved to new
positions in a single cycle of length n, which is the
original size of the array. The algorithm is widely
used in modern computing applications, such as
cryptography and mathematical modeling, owing to
its effectiveness and linear complexity O(n).
However, this algorithm is not suitable for
applications that require uniform probability
distributions, because cyclic permutations may not
contain all possible permutations.
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2.2.3 Bogo sort

Bogosort is also known as permutation sort or
stupid sort [18,21]. This helps to shuffle the datasets
that are not sorted because it repeatedly generates
random mutations until the list is sorted. As the end
status is a sorted status, it is labelled as a sorting
algorithm but is among the least effective because
randomizing the data to reach a sorting status leads
to unmeasurable conditions in terms of memory,
time, and required computational power. Therefore,
the expected time complexity is not clear, but the
minimum expected complexity is O(n) and the
maximum is limitless. However, generating random
mutations leads to limited shuffling, which may
affect the scheduling. In Bogosort developments, the
Fisher-Yates Shuffle is normally applied until a
sorted set is achieved. Therefore, in this study, we do
not re-peat the Fisher-Yates Shuffle, but test the
results of Bogosort and the effect-sorted datasets on
the scheduling problem.

2.2.4 Merge shuffle

The MergeShuffle algorithm follows the von
Neumann 1945 MergeSort algorithm, [17]
particularly in terms of the required running time
and di-vide-and-conquer design paradigm. This
algorithm is relatively quick when it runs in
nlog2(n)+0(1) time and is subject to parallelization
procedures [14]. Additionally, the algorithm
resulted in a swift performance even in increasing
permutation environments compared with the
Fisher-Yates Shuffle, which noticeably slowed down
in the same environments. Moreover, Fisher-Yates
Shuffle uses an increased number of recursive calls,
whereas MergeShuffle sets a cutoff threshold to
limit such calls.

2.2.5 Riffle shuffle (Overhand Shuffle)

Shuffling play cards are widely performed using the
Gilbert-Shannon-Reeds (GSR) model, which is based
on the Riffle shuffle algorithm [19]. Riffle shuffle
was investigated in terms of the shuffles required to
make the deck almost random. In 1992, Bayer and
Diaconis suggested that seven shuffles should be
adequate for randomizing card decks [20]. However,
if the dataset is larger than a standard card deck,
Riffle shuffle is not favored as the application
complexity increases, and scalable challenges are
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not well investigated.
2.3 Testing module

In this study, we built all the algorithms in the R-
CRAN environment and applied them sequentially
to the datasets listed in Table 1. Each algorithm was
granted 1000 runs of application to each dataset,
where each run had up to 100 iterations, and a
random schedule was generated in each iteration.
up to 100k schedules were generated using each
algorithm for each dataset. If an iteration leads to an
acceptable schedule, the remaining iterations are
omitted from the next run. A testing module was
created to determine the schedules that fulfilled all
the obligatory constraints. Partial fulfillment was
not achieved in this study. An acceptable schedule
must have all obligatory constraints fulfilled by each
student, where a student can have up to two exams
per day and the exams must not conflict in time,
knowing that each examination day can have up to
four time slots. Figure 1 presents a schematic
diagram of the testing module. Additionally, we
tested for the adequacy of the calendar exam days,
where an additional exam day was introduced if all
methods failed to find an acceptable schedule in
their 100k generated schedules, and we removed
one day if an algorithm found a schedule in at least
50% of its runs. Reducing the number of exam days
while still applying the obligatory constraints is
highly favorable. Finally, to achieve a fair time
comparison, we used the same device and testing
module for all algorithms.

Real Data from GIU Efficiency

Comparison

5 shuffling algorithms

Upto 100k

5,
4

Schedule
and
Generation
time

Conflict

Registration
g free?

Data

| Define Exam constraints
‘ Shuffle a schedule |-

Figure 1: Testing module
73. Results and Discussion

In this section, we present the results of applying the
chosen shuffling algorithms to the three-semester
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datasets. In addition to the time required to generate
and test an acceptable schedule, we report the
number of acceptable schedules generated by each
algorithm. Moreover, the sufficiency of exam dates is
well-tested by adding or removing exam days based
on the achieved results. For instance, six days were
insufficient to create an acceptable schedule among
the 100k schedules generated by each algorithm.
Therefore, we added a new examination day in which
most algorithms led to acceptable schedules. On the
other hand, we reduced the number of examination
days for the first semester to 11 days, where 12 days
led to many acceptable schedules and 11 days led to
sufficient acceptable schedules, as presented in Table
2. We report that none of the 100k Fisher-Yates
shuffling algorithms led to an acceptable schedule,
while other algorithms found at least 1. Surprisingly,
Riffle Shuffle reported exceptional performance,
indicating that with fewer multi-section courses and
an adequate number of exam days, it can be a good
choice. Moreover, MergeShuffle exhibited an
acceptable performance under the same conditions.

Table 2: Effect of shrinking first semester examination

days
Algorithm 12 Days 11 Days
Fisher-Yates Shuffle 923 0
Sattolo’s Algorithm 914 1
Merge Shuffle 983 3
Riffle Shuffle 1000 20

To apply Bogosort in our analysis while not repeating
the Fisher-Yates shuffle, we sorted
(ascending/descending) courses based on the
student count as a result of Bogosort and then
generated corresponding schedules. However, we
reported that sorting never leads to acceptable
schedules, indicating that it is not beneficial for
scheduling problems. Other algorithms achieved
acceptable schedules in most semesters but differed
in the number of iterations that found an acceptable
schedule and the time required to find them. Table 3
presents the detailed results of applying the selected
algorithms to the second semester dataset. The Riffle
shuffle could not lead to an acceptable schedule
among the 100k generated schedules in the second-
semester dataset. Possible reasons for this include
the high number of courses, increased number of
multi-section courses, and limited examination days.
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Other algorithms reported acceptable schedules,
where Merge Shuffle reported approximately three

Table 2: Results of applying chosen algorithms to second
semester dataset

Algorithm Count of Median of
acceptable | detection time
schedules (Seconds)

Fisher-Yates 69 11.9

Shuffle

Sattolo’s Algorithm | 65 14.8

Merge Shuffle 198 13.9

The summer semester dataset was relatively small in
terms of student count and registered courses. The
number of examination days was increased to seven,
because none of the algorithms reported an
acceptable schedule using six examination days.
Table 4 presents the detailed results for the summer
semester. Acceptable schedules were achieved in
most of the runs for all algorithms; however, Riffle
and MergeShuffle required less time.

Table 3: Results of applying chosen algorithms to
summer semester dataset

Algorithm Count of Median of
acceptable detection time
schedules (Seconds)

Fisher-Yates Shuffle | 821 2.27

Sattolo’s Algorithm | 802 3.13

MergeShuffle 875 2.0

Riffle Shuffle 827 1.9

In our findings, MergeShuffle and Sattolo’s algorithm
reported stable performance in the diverse datasets
we chose and found acceptable schedules, even with
increased numbers of multi-section courses on
limited exam days. However, their achievements
differ when early schedules are acceptable using
MergeShuffle, whereas Sattolo’s algorithm can
generate many unusable schedules before finding an
acceptable schedule. Figure 2 is a histogram
presenting the differences in performance between
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times the acceptable schedules compared to the
Fisher-Yates and Sattolo algorithms.

MergeShuffle and Sattolo’s algorithm considering the
second-semester findings. As assigned before, each
run creates up to 100 schedules (x axis). The figure
presents the frequency of finding the conflict-free
schedule among the 100 created schedules. the figure
shows that MergeShuffle is expected to find a conflict-
free schedule among the early created schedules
while using Sattolo’s algorithm might lead to several
useless conflicting schedules before finding the
desired schedule.

type
MergeShufe

Satiolo

Schedube

Figure 2: A histogram comparing the performance of
MergeShuffle and Sattolo’s algorithm

4. Conclusion and Future Scope

In this study, we investigated the effects of applying
different shuffling algorithms in the process of
scheduling university exams. Where sorted courses
based on student counts did not succeed in creating
an acceptable schedule, shuffling algorithms reported
a significant success. We used real registration
datasets from German Jordanian University (GJU).
The chosen fully encoded datasets presented diverse
environments, as they differed in terms of
registration cases, number of students, and number
of multi-section courses. To perform proper testing,
we repeated the application of each algorithm to each
dataset up to 100k times and reported our findings.
We found that some shuffling algorithms, such as
MergeShuffle and Sattolo’s algorithm, worked
properly under all environments but with higher time
costs. Other algorithms might have a faster action but
would work only in certain environments, such as the
Fisher-Yates and Riffle algorithms. Moreover, the
usage of MergeShuffle or Sattolo’s algorithm is highly
expected to result in a conflict-free schedule while
achieving the same result of other algorithms is less
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probable. Based on our findings, we highly advise to
use shuffling algorithms in the scheduling problem
while considering the features of registration
datasets. Finally, our findings suggest that shuffling
algorithms especially MergeShuffle and Sattolo’s
algorithm can be trusted for future developments of
university systems to achieve conflict-free exam
schedule generations
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