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Abstract 

In order to solve the three major problems of sensor noise leading to action recognition errors, physical distortion of virtual-reality interaction, and 
limited computing power of mobile terminals in real-time behavioral interaction in augmented reality (AR), this paper proposes a hybrid lightweight 
architecture: first, the multimodal noise perception layer is used to reduce sensor noise interference, second, a lightweight behavior recognition 
model is used to achieve 10ms real-time response, and finally a friction compensation physics engine is built to improve the realism of interaction. On 
the HoloLens 2 and Jetson Xavier platforms, the average error is reduced to 1.41mm, and the friction compensation error is reduced to 0.05–0.12N, 
which significantly improves the authenticity and real-time performance of AR interaction in scenarios such as industrial maintenance and medical 
training. 
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Introduction 

Augmented reality technology is gradually being 
integrated into key areas such as industrial 
manufacturing and medical surgery. Its core value 
lies in achieving seamless interaction between 
virtual information and the physical world. 
However, existing systems still face fundamental 
challenges: insufficient stability of motion capture 
due to sensor noise interference, lack of physical 
realism when virtual objects interact with the real 
environment, and real-time limitations caused by 
the computing bottleneck of mobile devices. These 
defects are particularly prominent in high-precision 
scenarios such as precision assembly and surgical 
simulation, which seriously restricts the depth and 
breadth of technology implementation. 

To overcome the above limitations, this study 
innovatively constructs a collaborative architecture 
that integrates noise suppression, lightweight 
computing and physical compensation: it purifies 
the input data stream through a multimodal noise 
perception mechanism, combines a lightweight 
spatiotemporal modeling network to ensure 
millisecond-level response, and establishes a friction  

dynamics compensation model to reshape the 
interactive realism. This architecture realizes the 
full-link optimization from data collection to 
physical feedback for the first time, providing 
reliable technical support for scenarios such as 
industrial digital twins and remote surgical 
guidance. The full text systematically explains the 
design principle and verification process of this 
architecture: section 2 analyzes existing technical 
achievements, section 3 details hybrid lightweight 
design, section 4 verifies scenario performance, and 
section 5 summarizes technical contributions and 
looks forward to evolutionary directions such as 
neural rendering fusion. 

2. Related works 

In the field of noise perception and friction control, 
multi-industry research focuses on high-precision 
modeling and real-time compensation mechanism 
innovation. Existing work covers scenarios such as 
industrial equipment, human-computer interaction, 
and environmental monitoring, aiming to improve 
system robustness and operational realism. Qian et 
al. [1] proposed an evaluation method for predicting 
the perceived annoyance of cabin noise using a 
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neural network model optimized by a hybrid 
algorithm to address the low accuracy of the 
quantification model for the perceived annoyance of 
cabin noise in traditional passenger cars. Li et al. [2] 
proposed a JPEG steganalysis method based on a 
noise-aware residual network to further explore the 
characteristics of steganographic noise signals in 
adaptive JPEG steganographic images. Compared 
with the comparison algorithm, this method can 
improve the detection performance of JPEG adaptive 
steganography and has better generalization ability. 
Wang et al. [3,17] proposed an airport noise sensing 
system based on the Internet of Things technology. 
The system consists of three parts: sensing nodes, 
aggregation nodes, and data processing platform. It 
can realize real-time monitoring and processing of 
airport noise and provide data basis for the noise 
environmental impact assessment of the airport 
surrounding area. Liu et al. [4] summarized the 
research and development history of China's 
environmental noise sensing technology and 
analyzed the current status of research. He reviewed 
the international research and development trends 
of environmental noise perception based on wireless 
sensor networks from five aspects: system 
architecture, low-cost noise sensor node design, 
noise taxonomy and sound source identification, 
energy capture and mobile noise perception. Chang 
et al. [5] designed a model-free active disturbance 
rejection controller to solve the problem of 
nonlinear friction and uncertain internal and 
external disturbances in two-dimensional linear 
motors. The scheme combines model-free adaptive 
control with the extended state observer in active 
disturbance rejection control to form a model-free 
adaptive observer. Loutrari et al. [6] attempted to 
evaluate the effect of interleaving noise on the 
immediate repetition of spoken and sung phrases of 
different semantic contents (descriptive, narrative, 
and anomalous). Roveda et al. [7] aimed to propose 
a method for learning a local friction compensation 
controller for a sensorless Cartesian impedance-
controlled robot. Zhu et al. [8] studied the problem 
of measurement noise suppression in linear output 
feedback control systems. Xiao et al. [9] proposed a 
human-machine collaborative assembly solution 
that does not require additional force/torque 
sensors. Wang et al. [10] studied a new friction 
compensation method for permanent magnet 
synchronous motor servo system based on static 
Stribeck model combined with fuzzy low-pass filter. 

These studies provide key technical paths for noise 
suppression and physical interaction compensation 
in complex scenes, and promote the continuous 
evolution of industrial control, robot collaboration 
and environmental perception systems towards high 
reliability. 

3. Methods 

3.1 Noise perception module 

First, multimodal noise modeling is performed, and a 
Gaussian noise model is established for the angular 
velocity and linear acceleration data of the inertial 
measurement unit (IMU): 

𝑛imu ∼ 𝒩(0, 𝜎2)(1) 

Among them, 𝜎2 =
1

𝑁
∑  𝑁
𝑡=1 (𝑥𝑡 − 𝜇)2 represents the 

noise variance; for the depth map data of the depth 
camera, a Poisson noise model is constructed: 

𝑃(𝑘; 𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!
(2) 

𝜆 represents the expected value of photon counts 
per unit time. An adaptive Kalman filter framework 
is established based on noise characteristics, and the 
state prediction is: 

x̂𝑡
− = Ax̂𝑡−1 + Bu𝑡(3) 

P𝑡
− = AP𝑡−1A

𝑇 + Q(4) 

A is the state transfer matrix, Q is the process noise 
covariance, and the observation noise covariance is 
adaptively corrected according to the real-time 

signal-to-noise ratio SNR = 10log10⁡(
|𝐳𝑡|

2

|𝐧𝑡|
2): 

𝐑𝑡 = 𝐑0 ⋅ exp⁡(−
SNR

𝛾
)(5) 

𝛾 is the attenuation coefficient, and 𝐑0 is the base 
covariance. Improving robustness through 
adversarial noise enhancement: Constructing a 
generative adversarial network (GAN), in which the 
generator G uses a U-Net structure to learn the noise 
distribution map 𝐺: z → n, and the discriminator D 
uses a 5-layer convolutional network to judge the 
authenticity of the sample [11,16]. The objective 
function is: 
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𝑚𝑖𝑛
𝐺

 𝑚𝑎𝑥
𝐷

 𝑉(𝐷, 𝐺) = 𝔼𝐱∼𝑝𝑑𝑎𝑡𝑎[log⁡𝐷(𝐱)] +

𝔼𝐳∼𝑝𝑧[log⁡(1 − 𝐷(𝐺(𝐳))](6) 

The generator outputs synthetic noise samples ñ =
𝐺(z) mixed with the original data to form an 
enhanced training set 𝒟aug = {(x𝑖 + ñ𝑗, 𝑦𝑖)}, so that 

the behavior recognition model can learn noise-
invariant features. This module implements multi-
level noise suppression and provides a purified data 
stream for subsequent behavior recognition [12]. 

3.2 Lightweight behavior recognition model 

The lightweight behavior recognition model uses 
MobileNetV3-small as the backbone network. Its 
core uses deep separable convolution to build an 
efficient feature extractor. The inverted residual 
block structure reduces the amount of calculation 
through a linear bottleneck layer. The mathematical 
expression is: 

𝐅̂ = ℋ𝑑𝑤(ℋ𝑝𝑤(𝐅))(7) 

𝐅𝑜𝑢𝑡 = ℒ(𝐅̂ ⋅ 𝒮(𝐅̂))(8) 

ℋ𝑑𝑤 is depth convolution, ℋ𝑝𝑤 is point convolution, 

𝒮 is the channel weight vector generated by the 
Squeeze-Excitation attention mechanism, and ℒ is 
the linear activation function [13]. Figure 1 shows 
the backbone network architecture of MobileNetV3-
small: 

 

Figure 1. MobileNetV3-small network architecture 

In order to capture the temporal dynamic 
characteristics of continuous actions, a temporal 
shift module (TSM) is embedded after the backbone 
network. This module divides the input feature map 
𝐗 ∈ ℝ𝑇×𝐶×𝐻×𝑊 into three parts {X𝑝, X𝑓 , X𝑐} along the 

time axis T, performs backward shift ((𝑡 → 𝑡 − 1)) 
on X𝑝, forward shift ((𝑡 → 𝑡 + 1)) on X𝑓, and X𝑐 

remains unchanged. The shift operation is defined 
as: 

𝐗𝑠ℎ𝑖𝑓𝑡(𝑡, 𝑐, ℎ, 𝑤) = 𝐗(𝑡 ± Δ𝑡, 𝑐, ℎ, 𝑤)(9) 

After the shift, the three parts are reconnected and 
the spatiotemporal features are fused through 
standard 3×3 convolution. To meet the requirements 
of mobile deployment, triple model compression is 
implemented: channel pruning evaluates channel 
importance based on the weight 𝐿1-norm and 
removes low-contribution channels that meet  

|𝐖𝑐|1

𝑚𝑎𝑥(|𝐖|1)
< 𝜂 (𝜂=0.05); 8-bit quantization maps full-

precision weights Wfloat and activation values to the 
integer domain: 

𝐖𝑖𝑛𝑡 = clip (⌊
𝐖𝑓𝑙𝑜𝑎𝑡

𝑠
⌉ + 𝑧,−128,127)(10) 

Scaling factor 𝑠 =
𝑚𝑎𝑥(𝐖)−𝑚𝑖𝑛(𝐖)

127−(−128)
, zero point z=0; 

knowledge distillation adopts the teacher-student 
framework, the teacher model is EfficientNet-B3, the 
student model is the compressed MobileNetV3-TSM, 
and the loss function integrates the standard cross 
entropy ℒ𝐶𝐸  and KL divergence distillation loss: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝛼 ⋅ ℒ𝐶𝐸(𝑦, 𝜎(𝐙𝑠)) + 𝛽 ⋅ KL(𝜎(𝐙𝑡/𝜏) ∥
𝜎(𝐙𝑠/𝜏))(11) 

𝐙𝑡 and 𝐙𝑠 are the teacher/student logits outputs, and 
𝜏 is the temperature parameter. This cascade design 
achieves high compression rate and low latency 
reasoning while ensuring the spatiotemporal 
modeling capability. 

3.3 Friction compensation physics engine 

The friction compensation physics engine achieves 
the realism of virtual-real interaction by integrating 
physical models with data-driven methods. The core 
adopts the rigid body dynamics friction model, 
which decomposes the total friction into three 
physical components: sliding friction component 
(proportional to the normal pressure and opposite 
to the direction of velocity), transition component 
from static friction to sliding friction (exponentially 
decays with increasing velocity), and viscous friction 
component (linearly proportional to the speed of 
movement). This physical model requires accurate 
material parameter support, so a material parameter 
database is established, which contains common 
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surface physical property mappings, as shown in 
Table 1: 

Table 1. Material parameter data 

Material 
Type 

Kinetic Friction 
Coefficient (μk) 

Static Friction 
Coefficient (μs) 

Viscous 
Coefficient (b) 

Metal 0.15 0.20 0.08 
Wood 0.35 0.45 0.12 
Fabric 0.28 0.38 0.15 
Plastic 0.25 0.30 0.10 
Rubber 0.60 0.70 0.25 

Based on the material type of the current interactive 
object, the system automatically loads the 
corresponding parameters and calculates the basic 
friction. In order to compensate for the errors of the 
physical model in complex contact scenarios, a 
neural network corrector is introduced, which 
accepts a 4-dimensional input vector (including 
contact position coordinates, relative motion speed, 
normal pressure value, material type encoding). The 
two-dimensional compensation (friction moment 
compensation and torque compensation) can be 
output through two fully connected hidden layers (8 
neurons + ReLU activation in the first layer, 2 
neurons in the second layer). The network training 
uses a real physical acquisition data set, and 
supervises the learning through 6,000 sets of contact 
experimental data under different material, 
pressure, and speed conditions. The loss function is 
defined as: 

ℒ =
1

𝑁
∑  𝑁
𝑖=1 ∥ 𝜏𝑟𝑒𝑎𝑙

(𝑖)
− (𝜏𝑝ℎ𝑦𝑠𝑖𝑐𝑠

(𝑖)
+ 𝜏𝑁𝑁

(𝑖)
) ∥2(12) 

Among them, 𝜏𝑟𝑒𝑎𝑙
⁡  is the measured value of the high-

precision force sensor, 𝜏𝑝ℎ𝑦𝑠𝑖𝑐𝑠
⁡  is the predicted value 

of the physical model, and 𝜏𝑁𝑁
⁡  is the compensation 

output of the neural network [14].  

The compensator runs in real time in the physical 
engine calculation loop. When an object contact 
event is detected, the compensation process is 
automatically activated: first, the material database 
is queried to obtain parameters, the physical model 
output is calculated, and the state parameters are 
input into the neural network to generate the 
compensation amount. Finally, the corrected friction 
force is applied to the virtual object to achieve 
consistent tactile feedback between the virtual and 
the real. 

3.4 Real-time optimization 

To reduce the load on the main processor, a 
heterogeneous computing offloading strategy is used 
to allocate key computing tasks to dedicated 
hardware: the image signal processor (ISP) chip 
directly processes the camera raw data and executes 
the key point detection algorithm (such as Harris 
corner point detection). The coordinate extraction 
process is expressed as: 

𝐩𝑘 = argmax
𝐩

(𝑑𝑒𝑡(𝐌) − 𝜅 ⋅ trace2(𝐌))(13) 

𝐌 = ∑  𝑥,𝑦 𝑤(𝑥, 𝑦) [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ] is the local 

autocorrelation matrix, and w(x,y) is the Gaussian 
window function. The detection results are directly 
transmitted to the GPU through the DMA channel to 
reduce the number of CPU interventions. At the 
same time, OpenCL is used to parallelize the core 
calculation of the physics engine: collision detection 
and friction calculation are mapped to the GPU 
multi-core architecture, and a three-dimensional 
grid space index is constructed through space 
division: 

Grid(𝑖, 𝑗, 𝑘) = ⌊
𝐱−𝐱𝑚𝑖𝑛

Δ
⌋(14) 

Each grid unit independently calculates the internal 
rigid body collision relationship [15], and introduces 
a gaze-driven dynamic LOD mechanism based on the 
visual characteristics of the human eye: the gaze 
vector 𝐯𝑔𝑎𝑧𝑒 is obtained through the built-in eye 

tracking module of the headset, and the viewing 
distance of the center point 𝐜𝑖  of each object in the 
scene is calculated: 

𝑑𝑖 =∥ 𝐜𝑖 − 𝐞 ∥⋅ |cos⁡𝜃|, 𝜃 = ∠(𝐯𝑔𝑎𝑧𝑒 , 𝐜𝑖 − 𝐞)(15) 

𝐞 is the eye position. 

4. Results and Discussion 

4.1 Noise perception performance 

On the HoloLens 2 platform, 20 sets of dynamic 
gesture data (including industrial maintenance 
actions such as fisting, sliding, and rotation) were 
collected, and a test set was constructed by injecting 
controllable noise (IMU angular velocity noise 
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variance 0.01–0.05 rad²/s², depth map Poisson 
noise λ=0.03–0.08). The motion trajectory 
smoothing effects of the traditional fixed parameter 
Kalman filter and the adaptive noise perception 
method in this paper are compared. The average 
jitter error of the key points of the hand is calculated 
(unit: mm) based on the original high-precision 
optical motion capture data. 

 

Figure 2. Average jitter error 

Experimental data show that the average jitter error 
of the traditional Kalman filter in 20 tests is 5.91mm 
(range 3.7–8.3mm). The proposed method 
significantly reduces the error to 1.41mm (range 
0.8–2.0mm), with an average error reduction of 
76.1%, exceeding the preset 70% target. In the noise 
mutation scene (test 5/9/11/15/19), the error of 
the traditional method soared to 7.2-8.3mm. Due to 
the adaptive adjustment of the Q/R matrix and GAN 
enhanced training, the error of this method was 
stabilized at 1.7-2.0mm. In the normal noise scene 
(test 1/4/8/12/16), this method further 
compressed the error to 0.8-1.2mm. The key 
improvement comes from the dual mechanism of the 
noise perception module: the dynamic Kalman filter 
suppresses sensor burst noise in real time, while the 
adversarial noise samples generated by GAN make 
the model more robust to high-frequency jitter. The 
two work together to achieve a qualitative change in 
the smoothness of the action trajectory. 

4.2 Real-time behavior recognition efficiency 

Six behavior recognition models were deployed on 
the platform. The test data set contained 200 sets of 
industrial maintenance action sequences (bolt 
assembly/equipment debugging/cable connection). 
The input resolution was 640×480@30fps. The 

power consumption was monitored using a Jetson 
power meter, and the delay measurement was 
accurate to 0.1ms. The efficiency of real-time 
behavior recognition was tested. Table 2 shows the 
test results: 

Table 2. Real-time behavior recognition efficiency 

Model Single-Frame 
Latency (ms) 

Model 
Size (MB) 

Accuracy 
(%) 

Energy 
Consumption 
(J/frame) 

ResNet-18 15.8 45.6 89.2 0.42 
LSTM 22.4 48.7 86.5 0.57 
EfficientNet-
B0 

8.9 15.3 90.1 0.31 

Two-Stream 
CNN 

18.3 62.1 91.3 0.49 

MobileNetV2 6.7 9.8 88.7 0.28 
GAN-
MobileNetV2 

3.8 4.3 93.7 0.24 

The method in this paper is ahead of the baseline 
model in terms of latency (3.8ms), model size 
(4.3MB) and energy consumption (0.24J/frame). The 
latency is reduced by 2.9ms compared with the 
optimal benchmark MobileNetV2, and the size is 
only 43.9% of MobileNetV2. This significant 
improvement is due to a triple optimization 
mechanism: first, the MobileNetV3-small backbone 
network uses deep separable convolution to reduce 
more computing load than conventional 
convolution; second, the temporal shift module 
(TSM) achieves spatiotemporal feature fusion 
without increasing the number of parameters by 
partially shifting the channels in the time dimension 
of the feature map (shift ratio 1/4), making the time 
series modeling more efficient than LSTM. In the 
final model compression strategy, channel pruning 
removes low-response channels, 8-bit quantization 
compresses the weight storage space to 1/4, and 
knowledge distillation is used to migrate fine-
grained action features from EfficientNet-B3. 
Especially in bolt assembly actions (high-frequency 
and fine operations), the method in this paper 
achieves continuous motion capture due to its low 
latency characteristics, avoiding the virtual tool drift 
phenomenon caused by latency accumulation in 
traditional models, and verifies the key supporting 
role of lightweight architecture for industrial-grade 
AR interaction. 

4.3 Friction compensation accuracy 

A three-axis force sensor (accuracy ±0.01N) was 
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used on a precision air-floating platform to measure 
the sliding friction of metal/wood/fabric surfaces 
and compare the errors before and after 
compensation. Four pressure conditions 
(5N/10N/15N/20N) and three speeds (0.1/0.5/1.0 
m/s) were set, with a total of 12 tests. Table 3 shows 
the friction compensation accuracy results: 

Table 3. Friction compensation accuracy results 

Material Pressure 
(N) 

Speed 
(m/s) 

Error Before 
Compensation 
(N) 

Error After 
Compensati
on (N) 

Metal 5 0.1 0.48 0.07 
Metal 10 0.5 0.52 0.08 
Metal 15 1.0 0.61 0.09 
Metal 20 0.5 0.67 0.1 
Wood 5 0.1 0.32 0.05 
Wood 10 0.5 0.38 0.06 
Wood 15 1.0 0.43 0.07 
Wood 20 0.5 0.49 0.08 
Fabric 5 0.1 0.61 0.09 
Fabric 10 0.5 0.65 0.1 
Fabric 15 1.0 0.72 0.11 
Fabric 20 0.5 0.79 0.12 

The average error of metal surface was reduced 
from 0.57N to 0.085N (a decrease of 85%), that of 
wood from 0.405N to 0.065N (a decrease of 84%), 
and that of fabric from 0.693N to 0.105N (a decrease 
of 85%). The reduction of error is mainly due to the 
dynamic compensation capability of the neural 
network corrector, especially under high speed 
(1.0m/s) and high pressure (20N) working 
conditions, the error after compensation is stable at 
0.09-0.12N. This is because the corrector learns the 
nonlinear friction effect that is not covered by the 
physical model and generates compensation torque 
in real time through the fully connected network. 
The material parameter database ensures that 
different surface characteristics (such as low friction 
of metal/high viscosity of fabric) are compensated in 
a targeted manner, forming a complete error 
suppression closed loop. 

5. Conclusions 

The hybrid lightweight architecture proposed in this 
paper effectively solves the three core challenges in 
real-time behavior interaction in augmented reality: 
sensor noise interference is significantly suppressed 
through the adaptive Kalman filter and adversarial 
training mechanism of the multimodal noise 

perception layer, greatly improving the stability of 
motion tracking. The lightweight behavior 
recognition model uses the timing module and triple 
compression strategy to break through the 
computing power limitations of the mobile terminal 
while ensuring the ability of spatiotemporal 
modeling and achieve millisecond-level response. 
The friction compensation physics engine combines 
the rigid body dynamics model and the neural 
network corrector to accurately restore the physical 
characteristics of virtual-real interaction. This 
architecture has verified its robustness and 
practicality in high-precision scenarios such as 
industrial maintenance and medical surgery, 
successfully bridging the perception gap between 
virtual information and the physical world. In the 
future, this paper can further explore the integration 
of cross-material parameter migration mechanism 
and neural radiation field rendering, combine 5G 
edge computing to optimize distributed processing 
capabilities, and continue to promote the evolution 
of AR interaction towards high realism, low latency, 
and strong adaptability, laying a technical 
foundation for the next generation of Industry 4.0 
and smart medical applications. 
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