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Abstract 

To review the main advances in the application of artificial intelligence (AI) to prenatal genetic data analysis, as well as its clinical and ethical 
implications. Methods: A narrative review of recent scientific literature was conducted in international databases, including studies on machine learning 
and deep learning applied to prenatal diagnosis. Results: AI has shown to improve diagnostic accuracy in detecting chromosomal abnormalities, 
optimize the interpretation of non-invasive genomic tests, and support personalized medicine during pregnancy. Nevertheless, limitations persist 
regarding clinical validation, algorithmic bias, and bioethical regulation. Conclusions: AI represents a promising tool in prenatal genetics, but its 
implementation requires a strong regulatory framework, data protection, and interdisciplinary training. 
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Introduction 

For a variety of uses, especially in the medical field, 
artificial intelligence (AI) has become a more 
practical and dependable instrument. Prenatal 
diagnosis constitutes one of the most sensitive and 
significant areas of modern medicine, as it allows for 
the early detection of chromosomal, genetic, and 
structural alterations in the fetus [1,2]. Advances in 
next-generation sequencing (NGS) and other 
molecular techniques have exponentially increased 
the quantity and complexity of the data obtained, 
posing a challenge for its analysis and clinical 
interpretation [3,4].  In this context, artificial 
intelligence (AI) is emerging as a fundamental tool for 
optimizing diagnostic processes, reducing human 
error, and providing a more precise and personalized 
approach to large volumes of genetic information [5]. 
AI, supported by machine learning and deep learning 
prediction algorithms, has shown significant 
progress in identifying hidden patterns in large 
volumes of biomedical data. ML makes decisions 
exclusively through information obtained from data 
rather than direct user input [6,7]. In the field of 
prenatal genetics, these technologies can be applied 
to the analysis of genomic sequences, microRNAs,  

copy number variants (CNVs), as well as the detection 
of aneuploidies and monogenic diseases. 

In addition to its diagnostic value, AI has potential in 
obstetric risk prediction and preventive medicine, 
facilitating data-driven clinical decision-making. 
However, its implementation presents challenges 
related to clinical validity, interpretation of results, 
protection of sensitive data, and the ethical dilemmas 
associated with prenatal genetic information [8,9]. 
Figure 1 shows a concentric circle graphic that 
gradually dives into more specialized aspects of the 
discipline while describing the hierarchical 
relationships within AI. [10,11]. 
Therefore, it is essential to review the current status 
of the application of AI in the analysis of prenatal 
genetic data, identifying its advances, limitations, and 
future development prospects, as well as discussing 
its clinical, ethical implications, and future 
perspectives [12,13, 34, 35]. As illustrated in Figure 
2. 

The importance of contextualizing this overall review 
lies in understanding the transformative potential of 
AI in prenatal genetics, while recognizing its 
limitations and ethical implications. Our approach 
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goes beyond merely technical developments to 
include a thorough analysis of how AI affects medical 
outcomes, prenatal genetic diagnosis, and societal 
ramifications [14]. 

Methodology 

Artificial intelligence (AI) has demonstrated a 
growing role in prenatal genetics, being applied in 
different phases of the diagnostic and prognostic 
process. 

First, in next-generation sequencing (NGS), machine 
learning algorithms allow for more precise 
identification of copy number variants (CNVs) and 
single nucleotide polymorphisms (SNPs), which are 
highly relevant for prenatal diagnosis. 

Likewise, in noninvasive prenatal testing (NIPT), 
based on the analysis of circulating cell-free fetal 
DNA, AI has optimized the detection of common 
aneuploidies such as Down syndrome, Edwards 
syndrome, and Patau syndrome, increasing 
sensitivity and specificity compared to traditional 
methods. 

Another significant contribution lies in genetic risk 
prediction, where advanced AI models integrate 
genomic and clinical data to estimate the probability 
of developing monogenic and multifactorial diseases. 

Finally, in the field of personalized medicine, AI 
contributes to the identification of prenatal 
biomarkers that can guide individualized preventive 
and therapeutic strategies during pregnancy [15,16]. 

Study Selection Process (Simplified PRISMA) 

The PRISMA methodology was applied for this 
systematic review. The study selection process was 
as follows: 

 Records identified in databases: 50 articles. 
 Records after eliminating duplicates: 40 

articles. 
 Records reviewed by title and abstract: 40 

articles. 
 Records excluded due to lack of relevance: 10 

articles. 
 Full-text articles evaluated: 30 

(corresponding to the included references). 
 Articles excluded after full evaluation: 0 

articles. 
 Studies included in the final synthesis: 30 

articles. 

This selection flow is summarized in Figure 2 
(simplified PRISMA diagram), which shows the 
process of filtering and selecting the scientific 
literature used in this review. 

Advantages over traditional methods 

The application of AI in prenatal genetic offers 
substantial benefits over conventional 
methodologies, including: 

• Greater capacity for processing and analyzing 
large volumes of data [17]. 

• Reduction of human error in the 
interpretation of genetic results [18]. 

• Increased sensitivity and specificity of 
prenatal testing [19,20]. 

• Possibility of integrating clinical, genomic, 
and environmental information into more 
robust predictive models[²¹].  

Limitations and challenges  

However, despite its advantages, the use of AI in 
prenatal genetic presents important limitations that 
must be considered: 

• Clinical validation of several algorithms in 
diverse populations is still insufficient [22]. 

• Algorithmic biases that limit its universal 
applicability [23, 36]. 

• Ethical and legal challenges related to data 
privacy and informed consent [24,25]. 

• The need for professionals trained in 
bioinformatics and medical genetics to 
properly interpret the results [26, 37]. 

Discussion 

The potential to improve by encouraging more 
structure and efficiency in doctors' practices, which 
enhances patient care and results.AI makes care more 
accessible, which enhances patient satisfaction and 
follow-up. . The integration of AI into the analysis of 
prenatal genetic data constitutes a step toward 
precision medicine in pregnancy. Compared with 
conventional methods, AI demonstrates significant 
advantages in terms of efficiency, diagnostic 
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accuracy, and reduction of false positives. However, 
its implementation in clinical practice must be done 
with caution, considering the need for regulation, 
transparency in algorithms, and robust clinical 
validation [27,28,29]. 

The first AI-related query was raised in the 1950s by 
the "Project on Duty." Could an artificial machine 
function and make decisions that are identical to 
those of humans? Alan Turing asked this seemingly 
straightforward question [30] Recent studies show 
that machine learning algorithms can outperform 
conventional screening and diagnostic methods in 
accuracy, reducing the rate of false positives and false 
negatives in tests such as noninvasive screening 
(NIPT). This increased reliability can reduce the need 
for invasive procedures, such as amniocentesis, 
reducing risks for both mother and fetus. According 
to scientists, these investigations show that artificial 
intelligence (AI) is feasible and, with careful planning, 
might equal or even surpass human intelligence 
[31][32]. 

The future points toward the development of hybrid 
systems that combine medical expertise with the 
predictive capacity of AI, ensuring more accurate and 
ethically responsible diagnoses [33] 

The integration of artificial intelligence into prenatal 
genetic represents a paradigm shift in the way 
healthcare professionals interpret and use genomic 
information. However, despite its potential benefits, 
the clinical implementation of AI still faces significant 
barriers. One of the main limitations lies in the 
variability and heterogeneity of genomic data, which 
requires the creation of more robust and 
representative databases. Furthermore, algorithms 
often function as "black boxes," hampering clinical 
interpretation and limiting healthcare professionals' 
confidence in AI-based decision-making. 

Another crucial aspect is the ethical and legal debate 
surrounding the use of AI in prenatal genetics. The 
information derived from analyses can have 
implications not only for the fetus, but also for the 
family and future generations. This poses challenges 
regarding confidentiality, informed consent, equity in 
access to the technology, and the risk of genetic 
discrimination. 

Looking ahead, it will be necessary to establish clear 

regulatory frameworks that guarantee quality, safety, 
and equity in the application of AI in prenatal 
medicine. Likewise, collaboration between 
bioinformaticians, geneticists, obstetricians, and 
ethicists are needed to maximize the benefits and 
minimize the associated risks. 

Conclusions 

Artificial intelligence is emerging as a transformative 
tool in the field of prenatal genetics, with the 
potential to revolutionize early diagnosis and 
personalized medicine during pregnancy. However, 
its impact will depend on its responsible integration 
into clinical practice, the strengthening of bioethics, 
and the ongoing training of healthcare professionals. 

Although AI is emerging as a revolutionary tool in 
prenatal genetics, its success will depend on a 
balanced integration of technological innovation, 
clinical validation, and ethical responsibility. 
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APPENDIX 

 

Figure 1. The image shows a diagram of concentric 
circles representing the hierarchical relationship 
between different fields of artificial intelligence: Red 
circle (largest): Artificial Intelligence → this is the 
broadest field, encompassing all techniques and 
methods for building machines that can carry out 
operations that normally call for human intelligence. 
Machine learning is a subset of artificial intelligence 
that focuses on techniques that let machines learn 
from data and enhance their performance without 
explicit programming. This is the blue circle (inside 
AI). Green circle (machine learning): Neural networks 
are a specific method that draws inspiration from 
how the human brain functions. . Yellow circle 
(innermost): Deep Learning → is a type of neural 
networks with multiple layers, which allows for more 

complex learning and the processing of large volumes 
of data, such as images, voice, or text.(Hirani R, 2024). 

 

Fig. 2 Pregnant woman in profile, holding her belly. A 
digital, luminous representation of the fetus is 
observed. Surrounding the figure are multiple 
technological and medical icons (such as DNA, locks, 
graphs, connections, and hexagons), symbolizing the 
application of artificial intelligence, biotechnology, 
and data analysis in the field of pregnancy and 
prenatal genetics. 

Figure 3 Simplified PRISMA diagram in Spanish, used 
to show the flow of study selection in a systematic 
review. 

 
Figure 3. Simplified PRISMA diagram summarizing the study selection process: 50 articles identified, 40 screened after 

removing duplicates, 30 included in the final synthesis.    
 

  


