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Abstract

Thyroid cancer cases increased rapidly in the past years. Treatments and clinical management depend on the full understanding of the cancer staging,
types, histology, along with possible causes. Presently, public data sources including NCBI GEO provide high-throughput datasets that highlights various
aspects of certain diseases and health conditions. Therefore, computational analysis of public gene expression datasets became of high importance
where gene expression studies can suggest novel biomarkers. Methods: In this work, we analyzed 6 human NCBI gene expression datasets that covers
different aspects of thyroid cancer aiming to identify gene expression signatures associated with thyroid cancer prognosis. Initially, we analyzed 3
thyroid cancer datasets focusing on radiation exposure with samples acquired from the Chernobyl Tissues Bank. Next, we analyzed advanced datasets
that labels tumor samples according to gender, tumor stage, and malignancy potential. Finally, we incorporated the uncovered differentially expressed
genes in intensive enrichment analysis of biological processes and pathways. Results: We identified many signatures associated with the radiation-
exposure samples in terms of differential gene expression and perturbed biological processes. Similarly, we reported a set of tumor class
characterizations consider tumor stages or patient gender. Finally, we presented conditions that require further attention malignancy analysis of
thyroid cancer. Conclusion: This work presents an advanced gene expression analysis of various aspects of thyroid cancer. We uncovered a set of novel
biomarkers along with the biological processes and pathways they are involved in. Additionally, we performed literature validation for a wide fraction
of our findings. Our findings present a good guidance to differentiate between thyroid cancer types, stages, malignancy potential, and gender related
conditions aiming to facilitate drug discovery and patient personalized therapies.
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1. Introduction

Thyroid cancer cases increased rapidly in the past 5
years becoming the most diagnosed endocrine
malignancy. In 2020, thyroid cancer had around half
a million reported cases with around 43000 deaths
and was ranked 11 among other cancers in terms of
new cases [1]. Surprisingly, WHO recently reported
that thyroid cancer elevated to rank 7 in terms of new
cases with more than 800000 cases and rank 24 in
terms of mortality with more than 47000 deaths [2].
Moreover, the thyroid cancer reported female cases
are about 3 times more than reported cases in males
[3] and more than 60% of the reported cases are in
Asia [2]. lonizing radiation is one of the thyroid
cancer lead causes where thyroid cancer increased
exponentially after Chernobyl (1986) and Fukushima
(2011) incidents in the affected areas. Generally,
thyroid cancer patients might suffer from neck lump,
neck swelling, voice change, persistent cough, along

with neck or throat pain.

Thyroid cancer had many classification schemes but
presently tumor cell of origin and molecular profile
are widely used to in the classification process [4].
The term “thyroid follicular nodular disease” is
currently used to label the heterogeneous group of
non-neoplastic and benign neoplastic lesions [5].
Most of the thyroid neoplasms are Follicular cell-
derived tumors and can be labelled as benign, low-
risk, and malignant neoplasms [6]. Benign thyroid
tumor category includes follicular adenoma with
papillary architecture and the oncocytic adenoma.
The Low-risk neoplasms category are expected to
have an excellent prognosis characterization and still
cannot be categorized as benign such as thyroid
tumors of uncertain malignant potential. Malignant
neoplasms have many different sub-categories
including Papillary thyroid carcinoma (PTC)
accounting for nearly 90% of the cases [7], [8],
Oncocytic thyroid carcinoma, High-grade follicular-
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derived thyroid carcinoma, or the Squamous cell
carcinoma [9]. However, in terms of differentiation,
thyroid cancer can be classified into high
differentiation as in PTC and follicular thyroid
carcinoma or Anaplastic Thyroid carcinoma (ATC)

with poorly differentiation status or
undifferentiation.
Diagnosis  procedures start with physical

examination followed by an ultrasound radiology
study or any imaging test [10], [11]. If the thyroid
nodule is greater than 1cm, a fine-needle-aspiration
(FNA) can be performed [12]. FNA findings leads the
following diagnosis procedures including several
molecular tests to complete a transcriptomic analysis
or a gene specific mutational panel [13].
Consequently, Therapeutic approaches will be
considered. PTC is mainly treated by Thyroidectomy
with radical lymphadenectomy. Moreover, the Food
and Drug Administration (FDA) and the European
Medicines Agency (EMA) approved several kinase
inhibitors such as lenvatinib and sorafenib as part of
the PTC clinical treatment [14], [15]. Patients with
thyroid nodules greater than 4cm are advised to
undergo surgical treatment as it has a greater
disease-free survival chance [16].

Thyroid cancer is generally overlooked as it is
considered stable with high mortality rate. However,
recent studies reported frequent aggressive
characteristics [71, unexpected prognostic
significance leading to death in many cases [17], or
even cancer recurrence[18]. Therefore, thyroid
cancer should have increased attention and targeted
projects including computational projects similar to
the recent work of Hu et.al. [19,58].

Computational projects will have a great impact
considering that availability of public data sources.
For instance, NCBI GEO currently has around 97
thyroid cancer expression profiling datasets for
human. However, the amount of expression analysis
projects targeting thyroid cancer are fewer than
expected. Therefore, we present in this work an
intensive analysis of 6 NCBI GEO gene expression
datasets aiming to present a broad idea about the
characteristics of thyroid cancer and to suggest novel
biomarkers for future studies.
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2. Methods
2.1 Datasets

To have a broad idea about Thyroid cancer statistics,
we intensively analyzed 6 NCBI GEO datasets with
different experimental conditions. GSE29265
compares expression profiles of a cohort of papillary
thyroid tumors from the Chernobyl Tissues Bank
(CTB) along with French patients with no history of
exposure to radiations, and their patient-matched
healthy adjacent thyroid. Similarly, GSE35570
discusses Gene signature of the post-Chernobyl
papillary thyroid cancer along with no radiation
exposure patient samples and a cohort of healthy
samples [20]. Moreover, GSE33630 dataset compares
gene expression of anaplastic thyroid carcinomas
from France and Belgium hospitals, papillary thyroid
carcinomas from the CTB, along with and normal
thyroids [21], [22]. Datasets GSE29265, GSE35570,
and GSE33630 studied post-Chernobyl thyroid
cancer samples and we analyzed their unique and
common features in this work. To complete this task,
we created pairs of classes prior the differential
expression analysis that are Radiation Vs. Control, No
Radiation Vs. Control, and Radiation Vs. No Radiation.
Common features include common differentially
expression genes (DEGs) in the 3 datasets and
common perturbed biological processes or pathway.
Later in this work, only common DEGs from the three
datasets where further studied to understand the
biological processes and pathways they effect using
advanced gene set analysis.

Additionally, we analyzed in this work GSE65074
dataset which discusses metastatic potential by
measuring RNA expression in the primary tumor at
the time of cancer surgery [23]. This dataset presents
gene expression data combined with gender and
tumor stage information. We performed two different
analyses for this dataset. The first analysis considered
classes Female and Male where regardless of the
tumor stage. The second analysis considered classes
T1-T2 and T3-T4 regardless of the gender. For
uncovered the DEGs for each of the classes in both
analyses. For instance, to find the DEGs of the female
class, we consider only the female sub-classes Female
T1-T2 and Female T-3T4.

Finally, we analyzed the GSE82208 and GSE27155
datasets considering the malignant follicular thyroid
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cancer and benign follicular thyroid adenoma [24],
[25], [26]. Differential results in these datasets
indicates that DEGs and perturbed processes did not
act the same in malignant and benign classes and it
worth further attention. In this analysis, we accepted
the DEGs only if found commonly in both datasets.

2.2 Differential expression analysis module

In this work, we check for DEGs using Kolmogorov-
Smirnov (KS) test followed by analysis of the
biological representations of the resulted DEGs using
enriched GO biological processes and perturbed
pathways. The basis of analysis method in this work
was used in previous cancer studies [27], [28], [29] .
We started by calculating the KS test in Python
environment through the scipy.stats package [30] to
find the top 500 differentially expressed genes for
each dataset along with their perturbed biological
processes and pathways. To discover the enriched
biological processes, we employed Gene Ontology
enrichment analysis using gseapy library, which is
widely used for analyzing RNA-seq, ChIP-seq, and
Microarray data [31]. Moreover, the perturbed
pathways are found using Kyoto Encyclopedia of
Genes and Genomes (KEGG) database, accessed using
bioservices package [32,59]. Later, we visualized the
enriched GO biological processes via the
Bioconductor packages GOSim [33], clusterProfiler
[34], [35], [36], [37], and ggplot2 [38]. Moreover, the
enriched pathways are detected using ShinyGo0.82
[39] or NIH DAVID [40,60]. Finally, we analyzed the
differential expression up or down expression
behaviors using log2 fold change in case the tested
classes appeared in multiple datasets. In this analysis,
we tested the up or down regulation status of early
defined DEGs considering the same classes in
different datasets. To the end, we applied a strict
selection method where only genes with the same
status in majority of the datasets where considered.

This multi-layer analysis system is proven to suggest
promising biomarkers. We expect to discover some
literature validated DEGs and a set of promising DEGs
for future work. Moreover, this analysis system
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facilitated basic homogeneity tests between different
datasets in terms of reported perturbed GO biological
processes and pathways where increased similar
findings between datasets with the same classes
increases the trustworthiness of the findings.

3. Results

In this section we report our findings when we
applied our gene expression module to the chosen
datasets along with the enriched biological processes
and perturbed pathways. The following sub-sections
correspond to the experimental environments as
reported in NCBI GEO.

3.1 Radiation exposure

Here we report the common findings of the analysis
performed to the GSE29265, GSE35570, and
GSE33630 datasets as those datasets have post-
Chernobyl samples along with no radiation exposure
samples in addition to the control samples.

To check the homogeneity of the perturbed processes
considering the three datasets, we checked for
common perturbed pathways and biological
processes in the three datasets. We found 235
commonly perturbed pathways (on average, ~67% of
all perturbed pathways in each dataset) and around
1800 common biological processes (on average,
~65% of all enriched Processes in each dataset)
which indicates a great match between the three
datasets. To have abroad idea about such findings, we
checked the common differentially expressed genes
underlying these perturbed processes in the three
datasets. Surprisingly, we found that only the
Radiation Vs. Control class in the three datasets
shared DEGs while other classes (Radian Vs. No
Radiation, No Radiation Vs. Normal) shared none. The
96 common DEGs where further analyzed for the
enriched biological processes they represent as
presented in Figure 1 where the dot size indicates the
number of genes involved, and color reflects the
adjusted p-value. The common DEGs are reported in
Supplementary table S1.
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Figure 1:Enriched biological processes considering the radiation vs. control DEGs

Moreover, the top enriched processes where further

analyzed to present the commonly participating
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Figure 2: Top radiation vs. control enriched processes along with participating DEGs
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Later, we checked the enrichment of the perturbed
pathways related considering the common Radiation
Vs. Normal DEGs, and we found that the top enriched
pathways are the Proteoglycans in cancer, ECM-
receptor interaction, Axon guidance, Renin secretion,
and Morphine addiction. Finally, we checked
expression behavior of the DEGs and noticed that

Batient-ratehed Pon-Tumed

AMIGO2, NRCAM, GABRB2, LRP4, PSD3, NGEF,
KCNJ2, and ADORAlwere commonly up regulated in
tumor samples while GPM6A, RELN, ARHGAP24,
CCL21, ODAM, and ANK2 where constantly down
regulated. Figure 3 presents the top up and down
regulated genes in selected datasets.

| -

apilary thyroid carcnama patient-matched non-tumas

Figure 3: (left) Down-regulated CCL2 as in GSE29265. (right) up-regulated AMIGO2 as in GSE33630

3.2 Gender and tumor stages

In this section we report the findings of our analysis
when we considered the dataset GSE65074. This
dataset facilitated wide comparisons considering the
gender and tumor stages T1-T2 and T3-T4.

Our analysis reported 22 common DEGs
characterizing the female class that are not
differentially expressed within in the male class
(Supplementary table S1). Next, we analyzed the
enriched biological processes of the DEGs and we
found only three main perturbed GO biological
processes controlling the sensory perception of pain,
stimulus detections, and mRNA pseudouridine
synthesis. Moreover, the DEGs were involved two
biosynthesis pathways specialized in
Glycosylphosphatidylinositol (GPI)-anchor or
Ubiquinone and other terpenoid-quinone in addition
to two amino acid metabolism pathways related to
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tyrosine and phenylalanine. On the other hand, we

found 28 common DEGs characterizing the male class
that are not differentially expressed in the female
class and were associated with biological processes
distinct from those observed in the female class
(Supplementary table S1). The enriched biological
processes include protein transport or localization
along with non-canonical NF-kappaB signal
transduction but with no detected enriched
pathways.

Later, we worked on the characterization of tumor
stages using DEGs and perturbed processes. We
found 76 DEGs that were characterizing the T1-T2
tumor stage class that are not differentially expressed
in the T2-T3 class (Supplementary table S1). The
DEGs especially the Immunoglobulin Heavy Constant
gene family have major roles in the enriched GO
biological processes as presented in Figure 4.
However, no enriched pathways were reported for
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this set of DEGs.
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Figure 4: Top T1-T2 tumor stage enriched processes and
participating DEGs

Similarly, we analyzed the T3-T4 class and found 134
special DEGs that are not differentially expressed in
the T1-T2 class (Supplementary table S1). The
enriched biological processes involved the inclusion
body assembly, protein sumoylation, and negative
regulation of protein binding. Additionally, we found
three enriched pathways considering the DEGs that
are the Chemical carcinogenesis - DNA adducts, Drug
metabolism - cytochrome, and the Metabolism of
xenobiotics by cytochrome.

3.3 Malignancy potential

In this section we analyzed GSE27155 and GSE82208
datasets to label the processes that act differently
between the malignant and benign classes of thyroid
cancer. We started by measuring the homogeneity of
the findings considering the results of the two
datasets. We found that ~61% of the enriched GO
biological processes and ~85% of all perturbed
pathways were common in the results of both
datasets. Next, we checked for the common DEGs and
found that only 34 DEGs were common
(Supplementary table S1). While only the small cell
lung cancer pathway was enriched considering the
common DEGs, multiple enriched biological
processes were uncovered involving mainly the tube
formation and closure as in Figure 5. However, none
of the uncovered genes were constantly up or down
regulated considering both datasets.
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Figure 5: Top malignant Vs. benign enriched processes
along with participating DEGs

4. Discussion

In this section we discuss our findings and provide
literature validations. The validated findings of our
computational approach indicate that the yet
unvalidated findings should get extra attention in
wet-lab analysis in thyroid cancer related
experiments. We found Noticeable Homogeneity
between the three datasets especially in the
Radiation Vs Control class considering the shared
pathways and GO terms. Moreover, the most of top
common DEGs (Figure 2) have known roles in thyroid
cancer such as CCL21 which is known for its roles in
promoting the invasion, proliferation, and metastasis
in thyroid cancer via CCR7/ERK [41], [42], [43].
Moreover, our analysis reported that CCL21 had
constantly down-regulated expression behavior in
most analyzed datasets. PSD3 has a similar effect
promoting proliferation, migration, invasion, and
G1/S transition while inhibiting apoptotic in
papillary thyroid cancer [44]. KCNJ2 is frequently
upregulated in papillary thyroid carcinoma cells and
recent studies suggest that interfering with KCNJ2
expression can inhibit the proliferation, invasion and
migration of PTC cells [45]. NrCAM expression could
be implicated in the pathogenesis and behavior of
PTC as it has persistently high mRNA and protein
levels in different tumor stages [46]. Similarly, MET
is frequently overexpressed in thyroid carcinoma
samples and is associated with adverse outcomes
[47] including high risk of metastatic dissemination
in PTC [48]. Therefore, MET protein has known roles
in approved thyroid cancer treatment medicines [49].
On the other hand, the expression of GPM6A
decreases in thyroid cancer as the tumor progresses,
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and it can inhibit the progression of malignant
tumors by inhibiting some signaling pathways,
suggesting that it may be a tumor suppressor gene
[50].

Next, we analyzed the GSE65074 dataset which
facilitated the gender and tumor stage specific
analyses. We created 4 classes that are Male, Female,
T1-T2, and T3-T4. We made intensive pairwise
comparisons and found that gender classes as well as
the stage classes can be characterized using the DEGs
and perturbed processes. Supplementary table S1
presents the differences in the reported DEGs. It is
noticed that many of is the reported DEGs were
already intensively studied in literature for thyroid
cancer. For example, the female class DEGs had ANO1
and FOXE1. Suppressing ANO1 activity noticeably
reduced migration and invasion of anaplastic thyroid
carcinoma [51]. Similarly, genetic variants and SNPs
in the FOXE1 have a significant risk factor for
developing thyroid cancer [52]. Similarly, the male
class DEGs involved FOX04, UBQLN3, and CLPTM1L.
FOXO04 is noticeably upregulated in follicular thyroid
carcinomas suggesting potentially tumor-promoting
roles [53]. A mutation in the UBQLN3 gene
(UBQLN3_R624Q), encoding a ubiquitin-like protein,
is detected in a classical subtype PTC [54].
Additionally, the chromosome 5p15.33 TERT-
CLPTM1L region have a significant association with
PTC [55].

Finally, we analyzed the GSE27155 and GSE82208
datasets which highlights the malignant and benign
classes. Initially, we checked how similar were the
findings between the two datasets and we found that
the resulted homogeneity was very high considering
perturbed biological processes and pathways. The
cross-datasets highly similar results promote the
trustworthiness of the findings. Moreover, we found
low amount of DEGs indicating low amount of
differentially acting processes in both cancer types.
Surprisingly, the top enriched biological processes
were the neural tube formation and closure
supporting that thyroid cells (specifically C cells)
exhibit features common in neuroendocrine cells
[56], [57].

5. Conclusions

Our multi-layer gene expression analysis model
revealed novel thyroid cancer biomarker genes
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supported by the perturbed biological processes. Our
overall findings are of great help to understand
cancer possible causes and prognosis aiming to
facilitate drug discovery and patient personalized
therapies. Initially, we reported a set of common
DEGs between datasets with radiation exposure data
indicating the possibility of identifying such cancer
types using certain DEGs and biological processes.
Next, we reported a set of DEGs and perturbed
processes that help understanding the tumor stage
differences. Moreover, our findings pointed at
possible gender specific perturbed biological
processes. Finally, we reported a set of DEGs and
biological processes that should be considered when
discussing the malignancy potential of thyroid
cancer. The main limitation of this study is the low
number of specialized datasets and the change
experimental conditions in the past years.
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Abbreviations

The following abbreviations are used in this
manuscript:

NCBI National Center for Biotechnology
Information

GEO Gene Expression Omnibus

DEG Differentially Expressed Gene

PTC Papillary thyroid carcinoma

GO Gene Ontology

WHO | World Health Organization

ATC Anaplastic Thyroid carcinoma

FNA fine-needle-aspiration

FDA Food and Drug Administration

EMA European Medicines Agency
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